
projects, for example an industrial compiler family for
SPARC™ processors. Code generators for INTEL™
80x86, MC68020, and MIPS™ R3000 have also been pro-
duced. With BEG you can have both very fast code genera-

The BEG Code Generator Technology is part of the leading
edge, industry proved compiler code generation technology.
For you, as a compiler developer, it allows making better
compilers for more target processors with a fraction of the
effort needed before. tors with reasonable code qual-

ity as well as code generators
producing very high code qual-
ity, from almost the same proc-
essor description. The latter
code generator contains a glo-

bal register allocator and a combined list and resource sched-
uler.

The BEG technology is currently available in C for
UNIX™ and WINDOWS™. The generated compilers are
C programs, which run in almost every C environment.

Technical Details
Machine Generation
Machine generation
means that the desired
code generator program
(a collection of C files)
is generated from a
processor description
by the generator pro-
gram BEG (see figure).
You write a processor
description instead of
the programs itself.
Writing a processor de-
scription is much
easier, faster, and safer
than writing the pro-
grams themselves. Your
processor description is
checked for consistency
leading to an improved
reliability of the code
generators produced.

Intermediate Lan-
guage You can inter-
face to existing com-
piler front ends without

changing the front end or translating the interme-
diate code by simply describing the intermediate code in the processor
description.

Flexibility To cope with the enormous variety of features offered by
current processors great flexibility is needed. The BEG technology
offers this using a general tree matching mechanism, by a graph col-
ouring based and highly parameterizable global register allocator, and
the resource scheduling technique. Conditions and actions in the proc-
essor description use the full power of the C language. Good inter-
faces support hand programming of special parts of the code genera-
tor, should this be required.

Code Generator Architecture A hand written code generator has a
fixed architecture, which is set up during design according to the desired
code quality and compilation speed. With BEG you can produce code
generators of very different architectures with little changes in the
processor descriptions. The diagrams show the architecture of a simple,
high compilation speed code generator in contrast to a much more
complex optimizing code generator.

The BEG Code Generator
Technology

Every new target processor requires developping new
expensive code generators; a difficult and error prone task -
-- especially for the emerging high performance super scalar,
requiring more and more difficult optimizations to be done.
The BEG technology solves this problem for you with a
revolutionary approach: the machine generation of the code
generator. You develop a codegenerator by simply formu-
lating a description of the target processor. The BEG pro-
gram reads this description and automatically assembles the
codegenerator (see figure).

The BEG technology is much more than just
a portable code generator with a fixed in-
termediate code or a pattern matching tool
for code selection. It combines a powerful
optimal tree pattern matcher with a library

of state of the art code generation algorithms
and a novel and powerful method for in-
struction scheduling.

BEG uses a variety of technologies to
generate the parts of the code generator, tree automata for
code selection, DAG matching for integration with SSA based
optimizers (e.g. the firm optimizer) machine simulation
automata for scheduling, integrated global/local register
allocation plus an automatic selection and parameterization
of components from a BEG internal library. All generation
is guided by one single integrated processor description,
which simplifies formulating processor descriptions and guar-
antees the integrity of the whole system.

BEG technology allows you to build a high quality
code generator in a fraction of the time and effort needed by
hand writing. The resulting code generator is very reliable
because it is generated from an automatically checked formal
specification in addition to which carefully tested compo-
nents from the library are reused. The BEG technology has
proved mature in several research and industrial compiler

Source ProgramSource Program

Front End

B
E
G

Processor
Description

Generated
Code Generator

Target Code

Integrated Code Generator As there are
many parts of a code generator, there are sev-
eral different methods to generate these parts.
In contrast to other tools, BEG generates all
components from a single integrated proces-
sor description. This guarantees consistency
among the parts, facilitates integration, and
simplifies the development of processor de-
scriptions.

Generation using Automata Theo-
retic Methods Automata theory offers algorithms to produce programs
(„automata“) based on certain sets of rules. These techniques have been
used successfully in parser generators for a long time. The extension to
trees, the tree automata theory, now makes is possible to automatically
produce code selectors. Novel techniques use the automata to simulate
the target processor, so making the resource scheduling feasible.

Generation by Parameterization Other parts of the code generator
(e.g. register allocation) are taken from a BEG internal library and pa-
rameterized according to the processor description. This allows reusing
these highly complex algorithms in any BEG generated code generator.
Consistency is automatically maintained by the BEG generator program.

Code Selection by Tree Pattern Matching Code selection selects
machine instructions for an intermediate code tree from the processor
description, which describes each instruction and addressing mode by
a tree pattern matching rule and a cost value. The machine generated
code selector selects the instructions for an intermediate code tree in an
optimal way according to the costs given in the description. So a proc-
essor description just describes what code can be selected, an algo-
rithm selecting the optimal code is deduced automatically and needs
not be programmed.

Code Selection by DAG Matching is an option. It is very powerful, if
the intermediate language is not in tree form but represented as DAG.
This is typlically the case if an SSA based optimizer is used. DAG
matching provides a much better code quality, because the pattern
matching now works on a complete basic block rather than a single
expression tree.

Register Allocation You can select between local and global register
allocation. Local register allocation works on the scope of an interme-
diate code statement, making it very fast. The global register allocator
works on a complete procedure at once. So intermediate results can
stay much longer in registers resulting in high quality code. The global
register allocator itself uses in an integrated local/global allocation
method. The machine's register set and the legal registers for each
machine instruction can be specified, covering a wide range of target
machines.

Instruction Scheduling A combined list and resource scheduler is gen-
erated. List scheduling reorders instructions, so that the pipeline of the
processor needs to wait as seldom as possible for an intermediate result
not yet computed. Resource scheduling takes a much deeper knowl-
edge of the machine’s pipeline into account to avoid possible pipeline
conflicts based on the limited number of functional units on the processor.
Especially, it can handle multiple issue processors, which can perform
more than one instruction in parallel. To make resource scheduling
possible, the target processor is simulated while scheduling. This became
practically possible only after applying finite automata techniques, as
invented in [3].The instruction scheduler still requires some adaptation

to new environments.

Uses of BEG technology BEG was first used in the very fast GMD
Modula-2 compiler Mocka™. Code generators were produced for

Code Selection

Register Allocation

Code Emission

Structure High Speed Code Generator

Motorola 68020, for SPARC™, for MIPS™, and INTEL 386,
INMOS™ T800 and PowerPC™. This
compiler is widely used in research and
education. The Linux version is a
major inroll available for free in source
code. Its processor description was
completely done by a student
previously not familiar with BEG
within 3 months.

BEG was used to produce an
industrial compiler family for C, ANSI
C, Modula-2, Fortran-77, and Pascal,
for the SPARC processors.

Publications More information about
BEG is contained in
[1] Emmelmann, Schröer, Landwehr:

BEG-a Generator for Efficient
Back Ends, Sigplan´89 Confer-
ence, Sigplan Notices, Vol.24 Nr.7
[2] Aßmann,Emmelmann,Grosch:
Stein auf Stein, Cocktail: Eine

Compiler-Compiler-Toolbox, IX Magazin 2/92
[3] T.Müller: Employing Finite Automata for Resource Scheduling,
MICRO-26; Austin Texas, December 93
[4] Codeselektion mit regulär gesteuerter Termersetzung, PhD-Thesis,
GMD Bericht NR 241, R.Oldenbourg Verlag, 1994
[5] BEG User Manual, 2003, availble at H.E.I.

Support and Maintainance BEG is supported and
maintained by H.E.I.

Distribution BEG is available as a basic package to
generate non-optimizing compilers. Options are the DAG
matching, the global register allocator, and the instruction
scheduler.

Usually BEG is sold on a processor architecture based
pricing or for a flat fee. BEG is available as object or as C
source code. With these licenses usually the generated code
generators can be distibuted without royalties.

For more information please contact
H.E.I. Informationssysteme GmbH
Wimpfenerstraße 23
68259 Mannheim, Germany
Tel: +49 621 795141, Fax: +49 621
795161
E-mail: info@h-e-i.de

Mocka is a trademark of the German national research center for computer science
(GMD)
The BEG technology was supported by the ESPRIT research program of the
European Community in the project COMPARE (#5399)
Any other product names are trademarks of their respective owners.
All information provided here is preliminary and subject to change without notice.
THIS PRODUCT SHEET IS PROVIDED "AS IS". H.E.I. DISCLAIMS ALL
WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING THOSE OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO
EVENT SHALL H.E.I. BE LIABLE FOR ANY INDIRECT, SPECIAL,
CONSEQUENTIAL OR INCIDENTAL DAMAGES; INCLUDING WITHOUT LIMITA-
TION LOST PROFITS OR LOSS OR DAMAGE TO DATA, EVEN IF H.E.I. HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
© H.E.I. and suppliers 1995-2004 All rights reserved.

Code Selection

Basic Block Graph Construction

Lowering Transformations

LIR Code Generation

Instruction Scheduling

Global Register Allocation

Code Emission

Structure Optimizing Code Generator

Rescheduling

